|
角膜地形图分析的数学模型分类及其在诊断圆锥角膜中的意义 |
|
K. KISA% index:a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus[J]. J Cataract Refract Surg,1999,25(10):1327-1335.
[5] 王雁,赵堪兴. 人眼视觉光学波阵面像差的研究及进展[J]. 中华眼科杂志,2004,40(1):66-69.
[6] Schwiegerling J, Greivenkamp JE, Miller JM. Representation of videokeratoscopic height data with Zernike polynomials[J]. J Opt Soc Am A Opt Image Sci Vis,1995,12(10):2105-2113.
[7] Schwiegerling J, Greivenkamp JE. Keratoconus detection basedon videokeratoscopic height data[J]. Optom Vis Sci,1996,73(12):721-728.
[8] Maeda N, Klyce SD, Smolek MK, et al. Automated keratoconus screening with corneal topography analysis[J]. Invest Ophthalmol Vis Sci,1994,35(6):2749-2757.
[9] Kalin NS, Maeda N, Klyce SD, et al. Automated topographic screening for keratoconus in refractive surgery candidates[J]. CLAO J,1996,22(3):164-167.
[10] Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach[J]. Invest Ophthalmol Vis Sci,1997,38(11):2290-2299.
[11] Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography[J]. J Biomed Inform,2002,35(3):151-159.
[12] Carvalho LA. Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps[J]. Optom Vis Sci,2005,82(2):151-158.
[13] Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods[J]. Artif Intell Med,2005,34(2):113-127.
[14] Kusiak A, Dixon B, Shah S. Predicting survival time for kidney dialysis patients: a data mining approach[J]. Comput Biol Med,2005,35(4):311-327.
[15] Firouzi F, Rashidi M, Hashemi S, et al. A decision tree-based approach for determining low bone mineral density in inflammatory bowel disease using WEKA software[J]. Eur J Gastroenterol Hepatol,2007,1上一页 [1] [2] [3] [4] [5] 下一页 上一个医学论文: 瞬康医用胶在引导组织再生膜固定中的应用 下一个医学论文: 改良型劈核器在小切口非超声乳化白内障手术中的应用
|
|
|
|
|
|
|