6个月,与BMP复合种植后,扫描电镜和光镜显示,1周时界面有新骨形成,2周后界面处形成骨能力显著增强,4周后出现成熟的骨板,骨性界面完整,8周时界面新骨已完全成熟。未复合组1周时界面未见新骨形成,2周时界面可见少量钙化程度低的新骨形成,12周时界面新骨才基本成熟[15]。说明BMP有早期启动诱导界面新骨形成的作用,缩短了种植周期。 由于BMP来源于异种骨基质提取,临床上有人提出关于BMP的免疫学问题[16],但尚不能确切证实。一些学者积极研制基因重组的BMP,并取得了成功。如何进一步完善其生产工艺将成为今后研究的热点。
3 钛芯生物活性玻璃陶瓷种植牙
生物活性玻璃陶瓷(BGC)具有良好的生物相容性,与钛种植牙复合能改善其机械强度,增加韧性并提高骨形成能力。植入后,释放Ca++、Mg++刺激局部骨质增生和诱导成骨作用,而且释放的离子与骨基质构成化学键,形成化学性结合,从而使其和骨组织结合力高,骨整合程度增强。扫描电镜下,骨基质与BGC植入体紧密相接,并有新生骨细胞附着于植入体表面,致密基质内有纤维成分和钙盐沉积。放射性核素骨显像的动态观察发现,BGC种植体的骨代谢高峰期是植入后1个月左右。酶组织化学考察证实:有滑膜化生现象,界面区有膜内成骨和结缔组织内成骨两种方式,且两种方式所成的新骨发生融合。以上均证明BGC对骨的生长有诱导作用。
4 生物陶瓷微孔钛复合BMP种植牙
将钛(Tc4)、羟基磷灰石(HA)、生物活性玻璃陶瓷颗粒混合烧结形成生物活性微孔复合种植体。实验证明:种植体与骨界面存在三相性(钛氧化膜:TiO,Ti2O,Ti2O3,HA晶相和BGC晶相),使钙、磷富集层形成,生物陶瓷降解产物再沉积,蛋白多糖、粘多糖类细胞外基质和天然骨粘合物粘连沉积并引导钙盐沉积在界面上[17]。光镜下,实验组(复合BMP)1周界面有大量软骨组织和骨基质,成骨细胞分化明显。4周为基本成熟的板状骨,8周Haversian系统清晰,对照组(未复合BMP)1周偶见软骨细胞分化,4周成骨细胞活跃,骨基质中有少量钙盐沉积,8周一定量骨基质长入较大孔内。X线衍射示:实验组第一周即已出现HA峰,提示界面有成骨形式HA,即钙盐沉积。而对照组第二周后出现较低的HA峰,说明由于bBMP的加入,成骨启动早,活跃,量大。生物力学测试:实验组2周2.262MPa,对照组4周才达2.214MPa。电镜下见种植体表面有轻度降解,加大了粗糙面和孔径,使植入体出现二期孔隙,与骨结合表面积增大,增大了化学结合力和机械嵌合力。而BMP复合后并未改变种植体的固有成分及其骨性整合方式,只是诱导界面新骨生成提前启动,成骨量大,健康。金岩等人实验也得到相似结果[18]。
5 氮化钛种植牙
氮化钛是一种表面改性的种植牙。是将钛作底料,在适当条件下将氮元素注入到钛表面而形成,以建立材料与机体的生物活性界面关系,具有较好的生物相容、早期整合等优点。SEM示:术后2周种植牙周围形成一层薄的网状胶原纤维,并可见骨细胞、成纤维细胞和淋巴细胞;6周时其周围成骨能力大大加强,并有钙盐沉积和成骨过程;12周时成骨能力进
一步加强;32周时界面基本达到骨整合,仅有极小的间隙。Seatomi认为此种植牙骨整合完善,生物相容性好,较对比HA种植牙界面纤维膜薄[19]。另有研究证实,该牙种植体植入骨内,无不良反应,也没有抑制机体的免疫力,有良好的抗腐蚀性能,特别是表面粗化后其骨整合的抗剪切强度有所提高,但没有诱导骨生成能力。 综上所述,骨整合作为种植成功的关键因素已经得到普遍认同,但尚有一些问题值得进一步探讨:
第一,骨整合是否符合生物学原理:理想的种植体是能够在种植体与骨间有一类似牙周膜组织的形成,传递和缓冲咀嚼压力,而骨整合因其缺乏类似天然牙的缓冲,有人认为它不符合生物学原理。
第二,种植体外形及表面微结构物对骨整合的影响:Brunski(1986)认为螺旋状设计及表面呈粗糙多孔状态为好。螺旋设计提供了大体上与骨锁合的关系,粗糙多孔表面又可产生微锁合作用,比光滑表面能承受更大的剪切强度[20,21]。Deporter等实验支持上述观点[22]。而Kinin等却认为在骨整合上有孔并不比光滑显示优越[23],并且,最适孔径、孔率、涂层材料、涂层方法、技术是否影响种植牙的机械强度,临床及远期效果到底有多大都有待进一步研究。
第三,功能负荷状态下骨整合的变化:无负荷状态下几乎所有临床应用的种植牙均可形成完善的骨整合。Mckinney,Deporter等发现功能负荷状态下有骨整合改建过程,负荷初的2~4周骨组织为纤维替代,5~
上一页 [1] [2] [3] 下一页