rns等通过Leo-A1单抗亲和层析的方法从血小板上纯化了PTA1分子,并进行了蛋白部分序列测定,证实PTA1分子为一全新的分子。通过纯化的PTA1分子再次免疫制备了抗PTA1的单克隆抗体NEWE1和NEWI1〔3〕。而后通过免疫沉淀证实从血小板、Jurkat细胞和T细胞上沉淀下来的分子是相同的。采用流式细胞仪检测发现Leo-A1和NEWE1能结合到PMA刺激的Jurkat细胞膜表面,并且平均荧光强度相同,但NEWI1不能在PMA刺激的Jurkat细胞膜表面着色,当增加Jurkat细胞膜通透性后,NEWI1能使Jurkat细胞着色,并且获得与Leo-A1和NEWE1相同的荧光强度,表明NEWI1识别的表位位于PTA1胞浆区。
用Leo-A1单抗进行的血小板裂解物免疫沉淀证实PTA1相对分子质量为(65~70)×103,蛋白带并不均一。O’Farrell双维电泳(two dimensional gel analysis)表明从活化T细胞免疫沉淀得到的PTA1分子为一弥散产物,pI范围为4.0~6.5,而血小板来源的PTA1分子的pI为3.5~4.2,其差别可能是由于糖基化不同造成的,用神经氨酸酶切除唾液酸后,两种来源的PTA1分子pI均转变为8.0,相对分子质量减少为(60~65)×103〔4〕。Burns等还发现,在不同的细胞系及不同的刺激条件下,通过免疫沉淀有2~3种相关蛋白同PTA1分子共沉淀下来,相对分子质量为(65~90)×103不等,pI4.0~6.5。当用Leo-A1单抗及不同血小板活化剂刺激血小板时,PTA1被快速磷酸化,同时相关蛋白中的部分分子也发生了低水平的磷酸化〔4,7〕。但这些共沉淀分子的特性、作用及结构仍不清楚。这些附加蛋白在人类嗜T淋巴细胞Ⅰ型病毒感染的HUT102B2细胞系中总能被免疫沉淀下来,在PHA刺激的T细胞中有时能沉淀下来,而在Jurkat细胞系中未能沉淀下这种蛋白。这些蛋白的发现总与肌动蛋白(actin)同时存在,提示这些蛋白定位于细胞内。
用125I标记PMA刺激的Jurkat细胞及血小板胞膜,再用磷酸肌醇磷脂酶C(phosphatidyl inositol phospholipase C)处理细胞,然后在Jurkat细胞上清中可以检测到从细胞膜上释放的PTA1抗原,表明PTA1分子至少是部分通过糖基磷脂酰肌醇(glycosyl phosphatidyl inositol, GPI)方式锚定于细胞膜上的。其它参与细胞信号转导的膜表面分子中,有部分是通过GPI方式锚定于细胞膜表面的。而在血小板上清中未发现PTA1抗原的释放,可能血小板PTA1分子主要以跨膜方式连接于血小板胞膜上,另一种可能是血小板胞膜对外源性酶的作用不敏感。
PTA1的表达及表达调节
已获得的实验证据表明,PTA1主要表达于巨核/血小板谱系、活化T细胞、NK细胞、单核细胞、胸腺细胞、及多种转化的造血细胞系。PTA1较高水平地表达于血小板,平均1 200个分子/每个血小板〔4〕。PTA1在巨核/血小板谱系有组成性表达,并且受到TPA(PKC激活剂)及PHA的上调。在部分白血病细胞系中,PTA1具有异质性表达(如红白血病细胞TF-1、巨核细胞Dami及HEL组成性表达PTA1,而红白血病细胞K562不表达PTA1〔9〕。上述结果提示,PTA1可能与髓样干细胞→CFU-GEMM→巨核细胞→血小板的发育过程及功能有关。另外,某些T细胞杂交瘤、T细胞白血病细胞高表达PTA1,HUT-102B2细胞系表达较高水平的PTA1,长臂猿细胞系MLA-144也高表达PTA1分子〔8〕。
PHA活化的正常T细胞及混合淋巴细胞反应中的活化T细胞表达PTA1分子,并受细胞因子及其它活化剂的调节,其中IL-1α、IL-1β、IL-2、IL-3、TNF-α及佛波酯PMA(phorbol ester)均对PTA1表达有上调作用。IL-1和IL-2最佳反应剂 量为200U/ml,PMA的最佳浓度为20~50ng/ml。几乎所有的刺激实验均表明PTA1在刺激后半小时至1小时内引起Leo-A1 McAb结合的减少,随后在10~20小时内PTA1的表达达到高峰。TGF-β对PTA1的表达有下调作用〔3〕。
PMA和IL-2对PTA1表达的上调作用依赖于蛋白质的合成。100μg/ml放线菌酮(cycloheximide)即完全抑制了IL-2和PMA对PTA1表达的诱导。而IL-1的刺激实验有所不同,在实验早期PTA1的表达没有减少,表达的高峰在刺激后7~8小时,15~18小时后降回本底水
上一页 [1] [2] [3] [4] 下一页