您现在的位置: 绿色健康网 >> 医学论文 >> 基础医学论文 >> 正文  

松果腺褪黑素与肾脏

入研究。


  Song等[12]研究豚鼠肾内碘标MT受体分布时发现,89.7%MT受体位于肾皮质,10.3%位于髓质,亦即肾内MT受体呈不均一性,皮质远远大于髓质,前者为后者8倍以上;肾组织MT受体分布的亚细胞水平研究显示:细胞核占59.3%、线粒体占22.3%、微粒体占18.3%、胞浆内则未发现MT受体。类似的发现亦见于兔和人胚胎肾组织[25,26]。这种不均一分布的生理意义目前尚不清楚,Pang等认为一个可能的意义是影响肾素分泌,进而调节肾小球及肾小管功能。


  Dubocovich等[21]根据MT受体与配体结合的亲和力和药理学特性的不同,将哺乳类动物脑组织的MT受体分为两种类型,一种是高亲和力受体(ML-1),另一种是低亲和力受体(ML-2)。Pang等[27]则认为,鸟类和哺乳类动物肾组织内的MT受体为ML-1型。进一步研究[21,24]5-氧-3-硫三磷酸鸟苷(GTPrS)对肾组织内碘标MT受体的影响时发现,MT受体与G蛋白偶联,cGMP可能是MT受体的第二信使,并且依照不同动物肾内MT受体对GTRrS的不同反应分为三个亚型,影响MT与配体结合Kd值者为ML-1α亚型,影响Bmax者为ML-1β亚型,对两者都影响则为ML-1γ亚型。据此,鸡肾内MT受体为ML-1γ亚型,豚鼠肾组织和人胚胎肾HEK293细胞表面为ML-1α亚型。最近,Song等[260]已克隆出豚鼠肾内MT受体,其本质是一种分子量为37000的蛋白质,定位于肾皮质近端小管外膜,与血浆G蛋白偶联,同脑组织内的MT受体本质相同。


  总而言之,进一步研究MT受体的病理生理作用,MT受体的详尽细胞内信号传递系统,不同环境条件下MT受体的调节将是未来MT受体研究的方向。


  2.褪黑素的抗自由基作用:肾损害的自由基学说认为,各种致病因素作用于肾组织,使其产生反应性氧化代谢产物,如超氧化阴离子(O2-)、过氧化氢(H2O2)和一氧化氮(NO)等。这些反应性氧化代谢产物是肾损害的重要介质。正常肾组织具有抗氧化防御系统,能清除或中和反应性氧化代谢产物。当反应性氧化代谢产物产生过多,超越组织细胞清除能力时,它将成为一种致病介质。这些介质可直接或间接毁损细胞膜结构,导致溶酶体释放,细胞死亡;抑或增加DNA突变,引起功能性蛋白质合成误差,从而形成各种急性或慢性肾损害。


  MT本身具有强大的清除自由基作用[16~20]。Poeggeler证实[20],MT是一种OH-自由基清除剂,其清除能力是谷胱甘肽的4倍,甘露醇的14倍。Pieri[25]比较了MT与维生素E的清除自由基能力,发现MT清除H2O2的能力是维生素E的2倍,是迄今为止最有效的亲脂性抗氧化剂。除上述体外实验外,一些体内实验亦证实了MT的抗氧化作用。Chen(1994)给动物应用MT,可清除自由基,从而逆转由自由基增多所导致的心肌膜Ca2+泵活性降低。谷胱甘肽合成抑制剂可诱导新生大鼠白内障,Abe等(1994)给大鼠注射MT可清除自由基,防止了新生大鼠白内障形成。


  进一步研究MT及其衍生物的结构发现,MT的结构与其抗氧化作用关系密切。Tan等的实验显示,MT清除自由基作用依赖于吲哚环上5位甲氧基,其侧链上的乙酰基具有协同作用。作为细胞内自由基清除剂,MT的高亲脂性和部分亲水性,使其易于通过细胞膜,并进一步穿过胞浆进入细胞核,更好地发挥抗氧化作用。MT抗自由基作用的机制,目前仍不清楚。多数学者认为,MT可直接清除自由基;其次,MT与其受体结合,引起细胞内特异性酶改变,进而清除自由基;另外,MT尚可通过不同途径减少多种氧自由基的合成。Pablos等[20]给予鸡和大鼠MT,测定各器官谷胱甘肽过氧化物酶活性,其活性在肾、肝、肺及脑中分别升高37%~300%,揭示MT可以激活过氧化物酶类,使其催化H2O2等过氧化物的活性增加,降低了机体细胞内的H2O2水平,抑制自由基的产生。


  前已述及 ,Ellis和Daniels等[8,15]亦观察到MT可通过清除自由基而保护肾损害;晚近,更有直接的实验证实了MT在体外和体 内均具有抗肝、肾的脂质过氧化作用。然其确切机理尚待进一步探讨。


  3.褪黑素调节炎症免疫反应:肾损害的免疫学说认为,各种内源性和外源性抗原可启动机体特异性的免疫应答过程,并识别肾组织细胞,激活多种炎性细胞,使其释放各种淋巴因子和炎性介质,如前列腺素、内源性阿片肽、血小板源性凝血因子、活性氧自由基等等,从而导致多种免疫性肾损害。


  MT与机体免疫功能密切相关。1981年,

上一页  [1] [2] [3] [4] 下一页


  • 上一个医学论文:

  • 下一个医学论文:
  • 相关文章
    松果腺褪黑素与肾脏
    人松果体结缔组织纤维的构筑  消蚀法扫
    猴松果体分泌物释放入脑脊液主要途径的
    Copyright © 2006-2012 绿色健康网(www.gio.org.cn) All Rights Reserved.
    声明:网站信息仅供参考,不能作为诊断及医疗的依据。