3%和18.8%;值的降低率为11.9%、42.7%和62.4%。在OCS参数中,与NS组比较,SS值明显降低,降低率为5.9%、36.5%和42.4%;Sv值明显升高,升高率为2.5%、61.2%和73.8%;Vv值变化不显著;Vt值显著升高,升高率为16.0%、52.4%和64.8%[12]。8.5、34.0和136.0 μmol/L,普鲁卡因胺对致密颗粒和α颗粒有显著的保护作用。与NS组比较,在致密颗粒的参数中,SS、Sv、St、Vv和Vt明显升高,SS升高率为153.6%、225.0%和256.2%;Sv升高率为81.6%、117.7%和188.9%;St升高率为96.3%、104.6%和145.3%;Vv的升高率为144.0%、205.6%和499.7%;Vt的升高率为221.3%、1000.9%和1593.4%。在α颗粒参数中,Nv升高率为68.2%、174.8%和335.9%;N升高率为14.8%、439.3%和696.0%;的升高率为45.4%、76.7%和87.5%;SS的升高率为-50.7%、-52.9%和-57.1%;Sv升高率为160.3%、360.5%和558.0%;St升高率为181.5%、313.5%和395.7%;的升高率为87.8%、106.0%和127.7%;、的升高率为81.4%、126.7%和202.3%;Vv的升高率为410.5%、678.9%和773.6%;Vt的升高率为195.8%、282.6%和297.8%[13]。
以上各种参数值随着普鲁卡因胺浓度增加与NS对照组差异性增加,但与空白对照组比较差异性减小,在最高浓度136.0 μmol/L中,除个别参数外,与空白对照组的各种参数值无显著差异性。以上结果说明普鲁卡因胺对血小板及其超微结构具有明显的保护作用,抑制血小板聚集、粘附和释放反应。
3 降低血小板细胞内游离Ca2+的浓度
普鲁卡因胺8.5、34.0、136.0 μmol/L显著地抑制人血小板内游离Ca2+增加。用Fura-2负荷的血小板细胞内的正常钙[Ca2+]i为95 nmol/L,当用0.5 μmol/L A23187刺激时,[Ca2+]i增加到1200 nmol/L,而给三种浓度普鲁卡因胺后,可降低到650~450 nmol/L。而且[Ca2+]i改变与一分钟聚集率和最大聚集率间呈显著线性相关(P<0.05)[6]。用570型粘附式细胞仪动态观察普鲁卡因胺对凝血酶激活的单个血小板细胞内游离Ca2+的影响。静息状态时对照组和给药组荧光值均较低,当加入0.1 u/ml凝血酶时,荧光强度迅速上升,两组达峰值时间均为20 s,但给药组最大升高幅度比对照组低21%(P<0.05)。随后荧光强度迅速下降,两组下降率均为-1 u/s,对照组和给药组下降幅度分别为57%和76%(P<0.05)。结果说明,普鲁卡因胺降低凝血酶诱导的血小板内游离Ca2+升高,而对Ca2+的再摄取没有影响[14]。
4 促进6-酮-前列腺素F1α(6-keto-PGF1α)生成及抑制血栓素B2(TXB2)和丙二醛(MDA)产生的作用
以胶原和肾上腺素混合液制造的小鼠血栓模型中,以5 mg/kg、10 mg/kg和20 mg/kg普鲁卡因胺给小鼠腹腔注射,用放免法测定6-keto-PGF1α和TXB2的血浆含量,结果表明,明显促进6-keto-PGF1α的生成,生成量提高率为70.8%~223.9%;同时显著地抑制TXB2产生,抑制率为20.5%~44.7%。6-keto-PGF1α与TXB2的比值明显提高,对照组为1.2,药物组分别为2.6、4.0和7.1[9]。体外实验证明,普鲁卡因胺显著地抑制花生四烯酸,ADP和凝血酶诱导的兔血小板聚集时产生TXB2。普鲁卡因胺8.5、34.0和136.0 μmol/L和554.0 μmol/L对A DP诱导的血小板产生的TXB2的抑制率为21.4%、36.6%、62.0%和70.1%;对疑血酶诱导血小板产生的TXB2的抑制率为53%、65%、90%和95%;普鲁卡因胺的浓度与抑制TXB2产生的效力之间存在着正相关关系,血小板聚集抑制率和TXB2产生的抑制率之间也存在着正相关关系[2,15,16]。在小鼠肺血栓栓塞时,20 mg/kg普鲁卡因胺腹腔注射给药后显著地抑制MDA的产生;体外实验证明,55.2和220.8 μmol/L的普鲁卡因胺显著地抑制胶原和肾上腺素诱导血小板聚集时引起的MDA增加[5]。
总之,体内外实验证明,普鲁卡因胺明显地抑制血小板聚集、粘附和释放反应;对血小板及其超微结
上一页 [1] [2] [3] 下一页