2的致病基因为HERG( Human“ether-a-go-go”related gene),位于7q35~36,由4个α亚单位组成,每个亚单位有6个跨膜片段,1个孔区及氨基和羧基末端,N和C末端均位于细胞内,跨膜片段S5、S6及连接两者的胞内肽段共同构成通道孔的结构域,跨膜区与孔区是突变的好发位点。其编码(rapidly activated delayed rectifier potassium channel,Ikr)的α亚基,调控着IKr的功能和表达,IKr是心室肌细胞动作电位复极期中的主要外向电流[4]。
(2)KCNH2作用机制:
HERG基因突变则导致IKr通道失活,电流减少或消失,引起心肌复极延长。目前,基因库中收录的HERG突变共200种。
HERG突变涉及通道的各个区域。目前将HERG突变致LQT2的机制归纳为:①合成异常;②细胞内运输异常;③通道门控异常;④通道离子选择性异常。一种突变可通过4种机制中的一种或数种发挥作用。其中合成异常和细胞内运输异常是HERG基因错义突变导致LQT2最常见致病机制。研究提示位于HERG通道α螺旋或者β折叠结构域的氨基酸替代与通道蛋白在细胞内的合成、修饰、成熟和运输异常相关[5]。
2.2 KCNE2
(1)KCNE2与LQT6:
KCNE2是LQT6的致病基因,定位于21q22.1。KCNE2编码含123个氨基酸的MiRP1基因相关蛋白,MiRP1有2个N-相关的糖基化位点,一条跨膜片段和2个蛋白激酶C介导的磷酸化位点,整个蛋白分子只有一个跨膜区即49~69区域,推测只有一个跨膜片段。KCNE2编码IKrβ亚单位。体外研究表明KCNE2能够与Kv4.2(kv-电压门控钾通道)结合调节其门控动力学。提示KCNE2不仅是IKr的β亚基,它可能同样作为瞬间外向钾电流(Ito)的β亚基调节其功能。KCNE2变异可引起心肌细胞动作电位钾离子流的改变而延长动作电位的复极化。
2.3 KCNH2与KCNE2的关系
MiRP1的主要功能是作为辅助亚单位与钾通道的α亚单位HERG一起形成完整的IKr通道,调节其整体的开放与失活动力学,增加通道的稳定性。
MiRP1与HERG共同形成的稳定的复合物与机体自然的Ikr通道在整体行为,对细胞钾离子的敏感性,通道的失活速度及更为重要的抗心律失常药物E-4031的反应等诸多方面均完全相同[6]。而且尽管整个通道的通透行为,开放动态均受到MiRP1的影响而改变,但是HERG通道开放的特性并没有改变,除极时Ikr通道激活产生小的外向电流,然后快速失活,在复极时转化为关闭状态的速度缓慢,允许更多的离子流通过。
3 SCN5A、Cav3和SCN4B
LQT3的致病基因是SCN5A,定位于3p21~24。由28个外显子组成,编码一长约2016个氨基酸的蛋白,该蛋白在细胞膜上形成4个结构类似的同源结构域(Domain,DⅠ-DⅣ),每个区域由6个跨膜片段组成,4个区共有24个片段。其中S5和S6片段之间的连接环构成通道孔,通道孔具有不对称结构,其选择性使Na+通过。S4片段为通道的电压感受器,当细胞膜电位除极时可使S4片段发生跨膜移动,激活钠通道产生钠电流。该基因编码心肌Na通道α亚单位。
SCN5A的基因突变可改变钠通道的正常结构,进而改变钠通道的功能,并导致心律失常的发生。SCN5A突变主要通过以下遗传机制引起心律失常:①功能缺失性突变:使钠通道失活延迟、形成无功能通道、钠通道快速失活;②功能获得性突变:引起钠通道失活减慢,及晚期钠电流的增加。
至今,在SCN5A基因上已发现175个突变位点,其中75个位点引起LQT3[7]。SCN5A突变致QT间期延长机制:突变多数集中在与通道灭活相关的区域,突变使钠通道失活延迟,2相的Na+电流持续不失活,使复极和动作电位的时程延长。由于动作电位时程的异常延长,使早期后除极及触发活动增加,并易诱发尖端扭转型室速。研究表明钠通道的失活延迟与心率减慢有关,因而LQT3患者多在心率缓慢或睡眠时发病。
Matteo等报道了致LQT9的基因Cav3,并证实它的发病机制通过改变INa。2007年Argelia 等[8]首次报道了致LQT10的SCN4B突变基因,这两型均与LQT3相似。
4 ANK2
细胞膜锚蛋白基因ANK2定位于4q25~q27。其功能是在心肌细胞横管和肌质网中将Na/Ca交换器、Na/K ATP酶和三磷酸肌糖受体(InsP3)有机地
上一页 [1] [2] [3] [4] 下一页